Use the information dimension , not the Hausdorff
نویسنده
چکیده
Multi-fractal patterns occur widely in nature. In developing new algorithms to determine multi-fractal spectra of experimental data I am lead to the conclusion that generalised dimensions Dq of order q ≤ 0, including the Hausdorff dimension, are effectively irrelevant. The reason is that these dimensions are extraordinarily sensitive to regions of low density in the multi-fractal data. Instead, one should concentrate attention on generalised dimensions Dq for q ≥ 1, and of these the information dimension D1 seems the most robustly estimated from a finite amount of data.
منابع مشابه
Historic set carries full hausdorff dimension
We prove that the historic set for ratio of Birkhoff average is either empty or full of Hausdorff dimension in a class of one dimensional non-uniformly hyperbolic dynamical systems.
متن کاملExtracting Information Is Hard: a Turing Degree of Non-integral Effective Hausdorff Dimension
We construct a ∆2 infinite binary sequence with effective Hausdorff dimension 1/2 that does not compute a sequence of higher dimension. Introduced by Lutz, effective Hausdorff dimension can be viewed as a measure of the information density of a sequence. In particular, the dimension of A ∈ 2ω is the lim inf of the ratio between the information content and length of initial segments of A. Thus t...
متن کاملThema Computability and Fractal Dimension
This thesis combines computability theory and various notions of fractal dimension, mainly Hausdorff dimension. An algorithmic approach to Hausdorff measures makes it possible to define the Hausdorff dimension of individual points instead of sets in a metric space. This idea was first realized by Lutz (2000b). Working in the Cantor space 2ω of all infinite binary sequences, we study the theory ...
متن کاملComputability and fractal dimension
This thesis combines computability theory and various notions of fractal dimension, mainly Hausdorff dimension. An algorithmic approach to Hausdorff measures makes it possible to define the Hausdorff dimension of individual points instead of sets in a metric space. This idea was first realized by Lutz (2000b). Working in the Cantor space 2ω of all infinite binary sequences, we study the theory ...
متن کاملThe Transfinite Hausdorff Dimension
Making an extensive use of small transfinite topological dimension trind, we ascribe to every metric space X an ordinal number (or −1 or Ω) tHD(X), and we call it the transfinite Hausdorff dimension of X. This ordinal number shares many common features with Hausdorff dimension. It is monotone with respect to subspaces, it is invariant under bi-Lipschitz maps (but in general not under homeomorph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997